Schulinterner Lehrplan für das Fach Chemie in Qualifikationsphase 1

Grundkurs

1. Säuren, Basen und analytische Verfahren (Inhaltsfeld 2) (Kontext: Säuren und Basen in Alltagsprodukten)

Zeitbedarf	Möglicher Unterrichtsgang / Inhaltsfelder	Fachbegriffe
6 Std.	Säuren und Laugen – Begriffe im Wandel der Zeit:	
	 von Arrhenius zu Brönsted 	(konjugierte) Säure-Base-Paare,
	 Donator-Akzeptor-Prinzip 	Donator/Akzeptor, Protolyse,
		Ampholyte, Oxonium-
		/Hydroniumion, Hydroxidion, alkalisch/sauer/neutral
8 Std.	Von der Leitfähigkeit reinen Wassers	Konzentration, Autoprotolyse,
	zum pH-Wert / pOH-Wert	Ionenprodukt des Wassers, pH-
	. , , ,	Wert
		Wiederholung chemisches GG,
		MWG, Massenwirkungskonstante
8 Std.	Nicht jede Säure ist gleich stark:	WWW G, Widsself Wil Kurigskonstante
	Säure-Base-Konstanten	(Protolysegrad), Säurestärke,
		Säure-Base-Konstanten, pK _s -Wert
8 Std.	Konzentration und pH-Wert I:	7, 3
	der pH-Wert lässt sich berechnen	Formeln zur pH-Berechnung
		starker Säuren, schwacher Säuren
		(bzw. Basen)
8-10 Std.	Konzentration und pH-Wert II:	
	 SchExp: Potentiometrische Titration 	Indikator, Neutralisation (zu
	[Leitfähigkeitstitration]	Wasser), Neutralpunkt,
	 Aufstellen und Vergleich von Titrationskurven 	Äquivalenzpunkt, Halbäqui-
		valenzpunkt, pH-Sprung, Puffer,
		Pufferbereich, Verschiebung des
		ÄP bei der Bildung von Salzen (mit
		saurem bzw. basischen Charakter)

1. Säuren, Basen und analytische Verfahren (Inhaltsfeld 2)

(Kontext: Säuren und Basen in Alltagsprodukten)

Zeitbedarf	Möglicher Unterrichtsgang / Inhaltsfelder	Fachbegriffe
10 Std.	Säuren und Laugen – Begriffe im Wandel der Zeit: • von Arrhenius zu Brönsted • Donator-Akzeptor-Prinzip	(konjugierte) Säure-Base-Paare, Donator/Akzeptor, Protolyse, Ampholyte, Oxonium- /Hydroniumion, Hydroxidion, alkalisch/sauer/neutral
15 Std.	Von der Leitfähigkeit reinen Wassers zum pH-Wert / pOH-Wert	Konzentration, Autoprotolyse, Ionenprodukt des Wassers, pH- Wert Wiederholung chemisches GG, MWG, Massenwirkungskonstante
15 Std.	Nicht jede Säure ist gleich stark: • Säure-Base-Konstanten	Protolysegrad, Säurestärke, Säure- Base-Konstanten, pK _s -Wert / pK _B - Wert
10-15 Std.	Konzentration und pH-Wert I: • der pH-Wert lässt sich berechnen	Formeln zur pH-Berechnung starker Säuren, schwacher Säuren (bzw. Basen)
10-15 Std.	 Konzentration und pH-Wert II SchExp: Potentiometrische Titration Leitfähigkeitstitration Aufstellen und Vergleich von Titrationskurven 	Indikator ,Neutralisation (zu Wasser), Neutralpunkt, Äquivalenzpunkt, pH-sprung, Puffer, Pufferbereich, Verschiebung des ÄP bei der Bildung von Salzen (mit saurem bzw. basischen Charakter)

Grundkurs

2. Elektrochemie (Inhaltsfeld 1)

(Kontexte: Mobile elektrische Energiequellen und elektrische Energie für chemische Reaktionen)

Zeitbedarf	Möglicher Unterrichtsgang / Inhaltsfelder	Fachbegriffe
20-25 Std.	Mobile elektrische Energiequellen:	
	Galvanische Zellen	Anode, Kathode, elektrischer
		Strom, Halbzelle
		Galvanische Zelle, Daniell-
		Element
		Zelldiagramm, Elektroden-
		potential, Elektronendruck
		Zellspannung
	 Standard-Wasserstoff-Halbzelle 	Standard-Wasserstoff-Halbzelle
	Elektrochemische Spannungsreihe#	Elektrochemische, Spannungs-
		reihe
	verschiedene Batterien und Akkumulatoren	Batterie, Akkumulator,
		Brennstoffzelle
15-20 Std.	Elektrische Energie für chemische Reaktionen:	
	Elektrolyse	Elektrolyse, Überspannung,
		Zersetzungsspannung
	Faraday Gesetze	Faraday Gesetze
	 Korrosionsvorgänge 	Elektrochemische Korrosion
	 Korrosionsschutz 	Lokalelement, Korrosionsschutz,
		Galvanotechnik, Opferelektrode –
		Opferanode, Eloxal-Verfahren

2. Elektrochemie (Inhaltsfeld 1)

(Kontexte: Mobile elektrische Energiequellen und elektrische Energie für chemische Reaktionen)

Zeitbedarf	Möglicher Unterrichtsgang / Inhaltsfelder	Fachbegriffe
30-35 Std.	Mobile elektrische Energiequellen:	
	Galvanische Zellen	Anode, Kathode, elektrischer
		Strom, Halbzelle
		Galvanische Zelle, Daniell-
		Element
		Zelldiagramm
		Elektrodenpotential,
		Elektronendruck, Zellspannung
	 Standard-Wasserstoff-Halbzelle 	Standard-Wasserstoff-Halbzelle
	Elektrochemische Spannungsreihe	Elektrochemische
	 verschiedene Batterien und Akkumulatoren 	Spannungsreihe
	Nernst- Gleichung	pH-Elektrode
		Nernst-Gleichung
		Batterie, Akkumulator,
		Brennstoffzelle, Konzentrations-
		berechnungen aus Potentialen
	Kenndaten von Batterien und Akkumulatoren	Kenndaten von Batterien und
		Akkumulatoren
25-30 Std.	Elektrische Energie für chemische Reaktionen:	
	Elektrolyse	Elektrolyse, Überspannung,
		Zersetzungsspannung
	Faraday Gesetze	Faraday Gesetze
	 Korrosionsvorgänge 	Elektrochemische Korrosion
	 Korrosionsschutz 	Lokalelement, Korrosionsschutz,
		Galvanotechnik, Opferelektrode –
		Opferanode, Eloxal-Verfahren

Grundkurs

3. Organische Produkte – Werkstoffe und Farbstoffe (Inhaltsfeld 4) (Kontext: Vom fossilen Rohstoff zum Anwendungsprodukt)

Zeitbedarf	Möglicher Unterrichtsgang / Inhaltsfelder	Fachbegriffe
15 Std.	 Erdöl, ein Gemisch vielfältiger Kohlenwasserstoffe: Stoffklassen zwischenmolekulare Wechselwirkungen homologe Reihe Destillation Cracken Reaktionstypen 	Wdh.: Summenformel, Strukturformel, Nomenklatur; Stoffklassen: Alkane, Cycloalkane, Alkene, Cycloalkene, Alkine Wdh. Stoffklassen: Alkohole, Aldehyde, Ketone, Carbonsäuren, Ester
30 Std.	Wege zum gewünschten Produkt: • Reaktionstypen • Elektrophile Addition	Reaktionsablauf Interdukt, Tradukt elektrophil, nukleophil, elektrophile Addition, Substitution, Eliminier- ung, Kondensation, I-Effekte, sterische Effekte

Leistungskurs

3. Organische Produkte – Werkstoffe und Farbstoffe (Inhaltsfeld 4) (Kontext: Vom fossilen Rohstoff zum Anwendungsprodukt)

Zeitbedarf	Möglicher Unterrichtsgang / Inhaltsfelder	Fachbegriffe
25 Std.	 Erdöl, ein Gemisch vielfältiger Kohlenwasserstoffe: Stoffklassen zwischenmolekulare Wechselwirkungen homologe Reihe Destillation Cracken Reaktionstypen 	Wdh.: Summenformel, Strukturformel, Nomenklatur; Stoffklassen: Alkane, Cycloalkane, Alkene, Cycloalkene, Alkine Wdh. Stoffklassen: Alkohole, Aldehyde, Ketone, Carbonsäuren, Ester
45 Std.	 Wege zum gewünschten Produkt: Reaktionstypen Elektrophile Addition Nukleophile Substitution 	Reaktionsablauf Interdukt, Tradukt elektrophil, nukleophil, Elektrophile Addition, Nukleophile Substitution, Eliminierung, Kondensation, I-Effekte, M-Effekte, sterische Effekte

Schulinterner Lehrplan für das Fach Chemie in Qualifikationsphase 2

Grundkurs

1. Organische Produkte – Werkstoffe und Farbstoffe (Inhaltsfeld 4) (Kontext: Maßgeschneiderte Produkte aus Kunstoffen)

Zeitbedarf	Möglicher Unterrichtsgang / Inhaltsfelder	Fachbegriffe
4 Std.	Die Vielfalt der Kunststoffe im Alltag - Eigenschaften und Verwendung: • Eigenschaften von makromolekularen Verbindunge • Thermoplaste • Duromere • Elastomere • zwischenmolekulare Wechselwirkungen	Thermoplaste Duromere Elastomere
6-8 Std.	Vom Monomer zum Polymer - Bau von Polymeren und Kunststoffsynthesen: • Reaktionsschritte der radikalischen Polymerisation • Polykondensation: Polyester • Polyamide: Nylonfasern	Radikalische Polymerisation Polykondensation Polyethylen, Polyester, Polyamide
4-6 Std.	Maßgeschneiderte Kunststoffe:	
2-4 Std.	 Kunststoffmüll ist wertvoll – Kunststoffverwertung: stoffliche Verwertung rohstoffliche V. energetische V. Ökonomische und ökologische Aspekte zum Einsatz von Einweggeschirr aus Polymilchsäure, Polystyrol oder Belland-Material 	

1. Organische Produkte – Werkstoffe und Farbstoffe (Inhaltsfeld 4)

(Kontext: Maßgeschneiderte Produkte aus Kunstoffen)

Zeitbedarf	Möglicher Unterrichtsgang / Inhaltsfelder	Fachbegriffe
6 Std.	Die Vielfalt der Kunststoffe im Alltag - Eigenschaften und Verwendung: • Eigenschaften von makromolekularen Verbindunge • Thermoplaste • Duromere • Elastomere • zwischenmolekulare Wechselwirkungen	Thermoplaste Duromere Elastomere
8-10 Std.	Vom Monomer zum Polymer - Bau von Polymeren und Kunststoffsynthesen: • Reaktionsschritte der radikalischen Polymerisation • Polymerisation: Polyester • Polyamide: Nylonfasern	Radikalische Polymerisation Polykondensation Polyethylen, Polyester, Polyamide
6-8 Std.	 Maßgeschneiderte Kunststoffe: Struktur-Eigenschafts-Beziehungen von Kunststoffen mit besonderen Eigenschaften und deren Synthesewege aus Basischemikalien z.B.: SAN: Styrol- Acrylnitril- Coplymerisate Cyclodextrine Superabsorber 	
6 Std.	 Kunststoffmüll ist wertvoll – Kunststoffverwertung: stoffliche Verwertung rohstoffliche V. energetische V. Ökonomische und ökologische Aspekte zum Einsatz von Einweggeschirr aus Polymilchsäure, Polystyrol oder Belland-Material 	

Grundkurs

2. Organische Produkte – Werkstoffe und Farbstoffe (Inhaltsfeld 4) (Kontext: Farbstoffe in Alltag und Analytik)

Zeitbedarf	Möglicher Unterrichtsgang / Inhaltsfelder	Fachbegriffe
4-6 Std.	Farbstoffe in Alltag:	
	Farbigkeit und Licht	Licht, Farbe, Komplementärfarbe
	 Absorptionsspektrum 	Absorption, Emission und Reflexion
	Farbe und Struktur	Additive und subtraktive
		Farbmischung
6 Std.	Der Benzolring:	
	 Struktur des Benzols 	Aromat, Hückelregel
	 Benzol als aromatisches System 	π-Elektronen-System
	Reaktionen des Benzols	Mesomerie-Energie
	Elektrophile Substitution	mesomere Grenzstrukturen
		π- und σ-Komplex
4-6 Std.	Vom Benzol zum Azofarbstoff:	
	 Farbige Derivate des Benzols 	Chromophor
	 Konjugierte Doppelbindungen 	bathochromer Effekt
	 Donator-/ Akzeptorgruppen 	Donator-/ Akzeptorgruppen
	Mesomerie	
	 Azogruppe 	Azofarbstoffe, Azogruppe
2-4 Std.	Welche Farbe für welchen Stoff?	
	 ausgewählte Textilfasern 	Zwischenmolekulare Wechsel-
	bedeutsame Textilfarbstoffe	wirkungen
	Wechselwirkung zwischen Faser und Farbstoff	Fasertypen (Baumwolle, Seide,
	Vor- und Nachteile bei Herstellung und	Kunstfasern)
	Anwendung	

2. Organische Produkte – Werkstoffe und Farbstoffe (Inhaltsfeld 4)

(Kontext: Farbstoffe in Alltag und Analytik)

Zeitbedarf	Möglicher Unterrichtsgang / Inhaltsfelder	Fachbegriffe
4-6 Std.	Farbstoffe in Alltag:	
	Farbigkeit und Licht	Licht, Farbe, Komplementärfarbe
	 Absorptionsspektrum 	Absorption, Emission und Reflexion
	Farbe und Struktur	Additive und subtraktive
		Farbmischung
		Extinktion
		Lambert-Beer-Gesetz
6-8 Std.	Der Benzolring:	
	Struktur des Benzols	Aromat, Hückelregel
	Benzol als aromatisches System	π-Elektronen-System
	Reaktionen des Benzols	Mesomerie-Energie
	Elektrophile Substitution	mesomere Grenzstrukturen
		π- und σ-Komplex
10-12 Std.	Vom Benzol zum Azofarbstoff:	
	Farbige Derivate des Benzols	Chromophor
	Konjugierte Doppelbindungen	bathochromer Effekt
	Donator-/ Akzeptorgruppen	Donator-/ Akzeptorgruppen
	Mesomerie	
	 Azogruppe 	Azofarbstoffe, Azogruppe
		Triphenylmethanfarbstoffe
		Azokupplung
4.6.6.1		Zweitsubstitution
4-6 Std.	Welche Farbe für welchen Stoff?	7
	ausgewählte Textilfasern	Zwischenmolekulare Wechsel-
	bedeutsame Textilfarbstoffe	wirkungen
	Wechselwirkung zwischen Faser und Farbstoff	Fasertypen (Baumwolle, Seide,
	Vor- und Nachteile bei Herstellung und	Kunstfasern)
	Anwendung	